Exponential fitting Runge–Kutta methods for the delayed recruitment/renewal equation
نویسندگان
چکیده
منابع مشابه
Asymptotic Performance for Delayed Exponential Fitting
The Damped and Delayed Sinusoidal (DDS) model is suitable for modeling compactly short time events (as the audio transient for instance). This property is closely related to its ability to reduce the time-support of each sinusoidal component. In this work, we derive an analytical and numerical conditional CRB for this model. In particular, we show that this model has, in general and at least, s...
متن کاملExponential Fitting of Matricial Multistep Methods for Ordinary Differential Equations
We study a class of explicit or implicit multistep integration formulas for solving N X N systems of ordinary differential equations. The coefficients of these formulas are diagonal matrices of order N, depending on a diagonal matrix of parameters Q of the same order. By definition, the formulas considered here are exact with respect to y = Dy + 4>(x, y) provided Q — hD, h is the integration st...
متن کاملAn exponential spline for solving the fractional riccati differential equation
In this Article, proposes an approximation for the solution of the Riccati equation based on the use of exponential spline functions. Then the exponential spline equations are obtained and the differential equation of the fractional Riccati is discretized. The effect of performing this mathematical operation is obtained from an algebraic system of equations. To illustrate the benefits of the me...
متن کاملExponential Runge-Kutta methods for the multispecies Boltzmann equation
This paper generalizes the exponential Runge-Kutta asymptotic preserving (AP) method developed in [G. Dimarco and L. Pareschi, SIAM Numer. Anal., 49 (2011), pp. 2057–2077] to compute the multi-species Boltzmann equation. Compared to the single species Boltzmann equation that the method was originally applied on, this set of equation presents a new difficulty that comes from the lack of local co...
متن کاملEffective order strong stability preserving RungeKutta methods
We apply the concept of effective order to strong stability preserving (SSP) explicit Runge–Kutta methods. Relative to classical Runge–Kutta methods, effective order methods are designed to satisfy a relaxed set of order conditions, but yield higher order accuracy when composed with special starting and stopping methods. The relaxed order conditions allow for greater freedom in the design of ef...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2016
ISSN: 0377-0427
DOI: 10.1016/j.cam.2016.02.017